
Dungeon Generation With
Properties of Wholeness

Dana Stokes & Eiler Poulsen

Problem statement
Attempting to construct dungeons based on a subset of the 15 Properties of
Wholeness.

More specifically, we are interested in generating a high-level overview of a
dungeon, (showing mainly only positive and negative space).

Literature
Christopher Alexander’s research: 15 Properties of Wholeness

Current research focuses on city generation (city, building, and floor plan)

Nothing found focusing on dungeon generation

Properties

- Strong Centers

- Good Shape

- Level of scale

- Alternating Repetition

- Gradients

(Excluded: Local
symmetry

Applicable?
Non-separateness)

Algorithm overview

1. Generate hotspots

2. Use hotspots to determine heatmap

3. Use heatmap for container generation

4. Generate rooms

5. (Generate corridors)

Hotspots
Hotspots have:

1. Location
2. Room generation characteristic such as color
3. Function to determine its influence(from 0-1) at a location (x,y).

○ Eg.: Heat falls off linearly according to the distance to the hotspot.
■ Specifically: heat * (1 - (distance/maxdistance))

○ Other options such as quadratic falloff

Heatmap
Call the hotspot’s heat function for each location and save the result.

 →

Now we can just look up the characteristics of a location instead of having to query
all of the hotspots every time.

Containers: Inverse transform sampling

↓

1 2 3 4

0.25 0.50 0.125 0.125

1 2 3 4

0.25 0.75 0.875 1

.1 → 1

.2 → 1

.25-.75 → 2

.75-.875 → 3

.875-1 → 4

Probability mass function
(=a discrete probability
density function),
normalized to 1

(A discrete) cumulative
distribution function Generating random numbers

between 0.0 and 1.0 returns
outcomes 1, 2, 3, or 4 at a
frequency in accordance with
their probability mass.

Sampling:

Container location by inverse transform sampling

Probability mass function
(see previous slide)

=

Container characteristics by inverse transform sampling
(eg. color)

Heatmap for
(e.g.) color, with
hotspots of red
and blue.

We already know the location,
and just want to sample a color
given that location (in this
example, (0, 1)).

↓
Probability mass function.()

Rooms
Stochastic space partitioning, as in the book: recursively divide the space
randomly down to a minimum size, and place rooms within those subspaces.

Naively implementing this makes for ugly rooms. Tweaks were made so rooms
always occupy at least 1/2 of the space on the shorter axis and ⅓ of the space on
the longer axis.

Good Shape.

(Corridors)
Construct minimum spanning tree with Kruskal’s algorithm: adds edges from
shortest to longest iff the edge doesn’t create a cycle, stops once all vertices are
connected.

Potentially add some more edges so it’s not as sparse.

